Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Sleep Res ; : e14198, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500205

RESUMO

Periodic leg movements during sleep (PLMS) may have crucial consequences in adults. This study aimed to identify baseline characteristics, symptoms, or questionnaires that could help to identify sleep-disordered breathing patients with significant PLMS. Patients aged 20-80 years who underwent polysomnography for assessing sleep disturbance were included. Various factors such as sex, age, body measurements, symptoms, apnea-hypopnea index (AHI), and sleep quality scales were analysed to determine the presence of PLMS. The study included 1480 patients with a mean age of 46.4 ± 13.4 years, among whom 110 (7.4%) had significant PLMS with a PLM index of 15 or higher. There were no significant differences observed in terms of sex or BMI between patients with and without significant PLMS. However, the odds ratios (OR) for PLMS were 4.33, 4.41, and 4.23 in patients who were aged over 50 years, had insomnia, or had an ESS score of less than 10, respectively. Notably, the OR increased up to 67.89 times in patients who presented with all three risk factors. Our analysis identified significant risk factors for PLMS: age over 50, self-reported insomnia, and lower daytime sleepiness levels. These findings aid in identifying potential PLMS patients, facilitating confirmatory examinations and managing associated comorbidities.

2.
J Clin Sleep Med ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546033

RESUMO

STUDY OBJECTIVES: The gold standard for diagnosing obstructive sleep apnea (OSA) is polysomnography (PSG). However, PSG is a time-consuming method with clinical limitations. This study aimed to create a wireless radar framework to screen the likelihood of two levels of OSA severity (i.e., moderate-to-severe and severe OSA) in accordance with clinical practice standards. METHODS: We conducted a prospective, simultaneous study using the wireless radar system and PSG in a Northern Taiwan sleep center, involving 196 patients. The wireless radar sleep monitor, incorporating hybrid models such as deep neural decision trees, estimated the respiratory disturbance index relative to the total sleep time established by PSG (RDIPSG_TST), by analyzing continuous-wave signals indicative of breathing patterns. Analyses were performed to examine the correlation and agreement between the RDIPSG_TST and apnea-hypopnea index (AHI), results obtained through PSG. Cut-off thresholds for RDIPSG_TST were determined using Youden's index, and multiclass classification was performed, after which the results were compared. RESULTS: A strong correlation (ρ = 0.91) and agreement (average difference of 0.59 events/h) between AHI and RDIPSG_TST were identified. In terms of the agreement between the two devices, the average difference between PSG-based AHI and radar-based RDIPSG_TST was 0.59 events/h, while 187 out of 196 cases (95.41%) fell within the 95% confidence interval of differences. A moderate-to-severe OSA model achieved an accuracy of 90.3% (cut-off threshold for RDIPSG_TST: 19.2 events/h). A severe OSA model achieved an accuracy of 92.4% (cut-off threshold for RDIPSG_TST: 28.86 events/h). The mean accuracy of multiclass classification performance using these cut-off thresholds was 83.7%. CONCLUSIONS: The wireless-radar-based sleep monitoring device, with cut-off thresholds, can provide rapid OSA screening with acceptable accuracy, and also alleviate the burden on PSG capacity. However, to independently apply this framework, the function of determining the radar-based total sleep time requires further optimizations and verification in future work.

3.
BMJ Open Respir Res ; 10(1)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940353

RESUMO

BACKGROUND: Air pollution may alter body water distribution, it may also be linked to low-arousal-threshold obstructive sleep apnoea (low-ArTH OSA). Here, we explored the mediation effects of air pollution on body water distribution and low-ArTH OSA manifestations. METHODS: In this retrospective study, we obtained sleep centre data from healthy participants and patients with low-ArTH OSA (N=1924) in northern Taiwan. Air pollutant exposure at different time intervals (1, 3, 6 and 12 months) was estimated using the nearest station estimation method, and government air-quality data were also obtained. Regression models were used to assess the associations of estimated exposure, sleep disorder indices and body water distribution with the risk of low-ArTH OSA. Mediation analysis was performed to explore the relationships between air pollution, body water distribution and sleep disorder indices. RESULTS: First, exposure to particulate matter (PM) with a diameter of ≤10 µm (PM10) for 1 and 3 months and exposure to PM with a diameter of ≤2.5 µm (PM2.5) for 3 months were significantly associated with the Apnoea-Hypopnoea Index (AHI), Oxygen Desaturation Index (ODI), Arousal Index (ArI) and intracellular-to-extracellular water ratio (I-E water ratio). Significant associations were observed between the risk of low-ArTH OSA and 1- month exposure to PM10 (OR 1.42, 95% CI 1.09 to 1.84), PM2.5 (OR 1.33, 95% CI 1.02 to 1.74) and ozone (OR 1.27, 95% CI 1.01 to 1.6). I-E water ratio alternation caused by 1-month exposure to PM10 and 3-month exposure to PM2.5 and PM10 had partial mediation effects on AHI and ODI. CONCLUSION: Air pollution can directly increase sleep disorder indices (AHI, ODI and ArI) and alter body water distribution, thus mediating the risk of low-ArTH OSA.


Assuntos
Poluentes Atmosféricos , Apneia Obstrutiva do Sono , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos Retrospectivos , Água Corporal/química , Apneia Obstrutiva do Sono/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Oxigênio , Nível de Alerta , Água
4.
J Otolaryngol Head Neck Surg ; 52(1): 71, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898803

RESUMO

BACKGROUND: Continuous positive airway pressure (CPAP) therapy is the first-line treatment for obstructive sleep apnea (OSA). However, the low acceptance rate of CPAP remains a challenging clinical issue. This study aimed to determine the factors that influence the acceptance rate of CPAP. METHODS: This retrospective cohort study was conducted at the sleep center of Shuang-Ho Hospital. Initially, 1186 OSA patients who received CPAP therapy between December 2013 and December 2017 were selected, and finally, 1016 patients were analyzed. All patients with OSA received CPAP therapy for at least 1 week, and their acceptance to treatment was subsequently recorded. Outcome measures included patients' demographic and clinical characteristics (sex, age, BMI, comorbidities, history of smoking, and the medical specialist who prescribed CPAP treatment), polysomnography (PSG) results, and OSA surgical records. RESULTS: Patients with a lower CPAP acceptance rate were referred from otolaryngologists (acceptance rate of otolaryngology vs. others: 49.6% vs. 56.6%, p = .015), in addition to having a lower apnea-hypopnea index (AHI) (acceptance vs. non-acceptance: 55.83 vs. 40.79, p = .003), rapid eye movement AHI (REM-AHI) (acceptance vs. non-acceptance: 51.21 vs. 44.92, p = .014), and arousal index (acceptance vs. non-acceptance: 36.80 vs. 28.75, p = .011). The multiple logistic regression model showed that patients referred from otolaryngology had a lower CPAP acceptance rate (odds ratio 0.707, p = .0216) even after adjusting for age, sex, BMI, AHI, REM-AHI, arousal index, comorbidities, and smoking status. CONCLUSIONS: Before their initial consultation, patients may already have their preferred treatment of choice, which is strongly linked to the type of medical specialists they visit, and consequently, affects their rate of acceptance to CPAP therapy. Therefore, physicians should provide personalized care to patients by exploring and abiding by their preferred treatment choices.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Apneia Obstrutiva do Sono , Humanos , Estudos de Coortes , Pressão Positiva Contínua nas Vias Aéreas/métodos , Estudos Retrospectivos , Apneia Obstrutiva do Sono/terapia , Comorbidade
5.
Digit Health ; 9: 20552076231205744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846406

RESUMO

Objective: Obstructive sleep apnea is a global health concern, and several tools have been developed to screen its severity. However, most tools focus on respiratory events instead of sleep arousal, which can also affect sleep efficiency. This study employed easy-to-measure parameters-namely heart rate variability, oxygen saturation, and body profiles-to predict arousal occurrence. Methods: Body profiles and polysomnography recordings were collected from 659 patients. Continuous heart rate variability and oximetry measurements were performed and then labeled based on the presence of sleep arousal. The dataset, comprising five body profiles, mean heart rate, six heart rate variability, and five oximetry variables, was then split into 80% training/validation and 20% testing datasets. Eight machine learning approaches were employed. The model with the highest accuracy, area under the receiver operating characteristic curve, and area under the precision recall curve values in the training/validation dataset was applied to the testing dataset and to determine feature importance. Results: InceptionTime, which exhibited superior performance in predicting sleep arousal in the training dataset, was used to classify the testing dataset and explore feature importance. In the testing dataset, InceptionTime achieved an accuracy of 76.21%, an area under the receiver operating characteristic curve of 84.33%, and an area under the precision recall curve of 86.28%. The standard deviations of time intervals between successive normal heartbeats and the square roots of the means of the squares of successive differences between normal heartbeats were predominant predictors of arousal occurrence. Conclusions: The established models can be considered for screening sleep arousal occurrence or integrated in wearable devices for home-based sleep examination.

6.
Sci Total Environ ; 903: 166531, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633386

RESUMO

BACKGROUND: Growing evidence suggests the detrimental impact of supine position and air pollution on obstructive sleep apnea (OSA), as well as the potential benefits of nonsupine positions. However, their interaction effects on OSA remain unclear. OBJECTIVES: To evaluate the interaction effects of air pollution (NO2/PM2.5) and sleep position on OSA on additive and multiplicative scales. METHODS: This study included 3330 individuals. Personal exposure to air pollution was assessed using a spatiotemporal model. OSA was diagnosed through polysomnography. The associations of supine and nonsupine positions and air pollutants with mild-OSA and their interaction effects on mild-OSA. were explored through generalized logistic regression. RESULTS: Supine position and high NO2 level independently increased the risk of mild-OSA, while PM2.5 was not associated with mild-OSA. Significant interactions were observed between supine position and NO2 at different lag periods (0-7 days, 0-1 year, and 0-2 years) (P = 0.042, 0.013, and 0.010, respectively). The relative excess risks due to interactions on the additive scale for 1-week, 1-year, and 2-year NO2 exposure and supine position were 0.63 (95 % CI: 0.10-1.16), 0.56 (95 % CI: 0.13-0.99), and 0.64 (95 % CI: 0.18-1.10); the corresponding odds ratios for interactions on the multiplicative scale were 1.45 (95 % CI: 1.01-2.07), 1.55 (95 % CI: 1.09-2.22), and 1.60 (95 % CI: 1.12-2.28). The positive interactions persisted in men and participants with obesity. No interaction was observed between nonsupine position and NO2 levels; nevertheless, significant interactions were noted on both the negative additive and multiplicative scales in men. CONCLUSION: Prolonged supine sleep significantly increased the risk of mild-OSA, particularly in men and individuals with obesity. Although the benefits of nonsupine position are considerably less than the risks of NO2 exposure, avoiding prolonged supine sleep may reduce the risk of mild-OSA caused by high levels of NO2 in men.

7.
Front Public Health ; 11: 1175203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397706

RESUMO

Background: Exposure to air pollution may be a risk factor for obstructive sleep apnea (OSA) because air pollution may alter body water distribution and aggravate OSA manifestations. Objectives: This study aimed to investigate the mediating effects of air pollution on the exacerbation of OSA severity through body water distribution. Methods: This retrospective study analyzed body composition and polysomnographic data collected from a sleep center in Northern Taiwan. Air pollution exposure was estimated using an adjusted nearest method, registered residential addresses, and data from the databases of government air quality motioning stations. Next, regression models were employed to determine the associations between estimated air pollution exposure levels (exposure for 1, 3, 6, and 12 months), OSA manifestations (sleep-disordered breathing indices and respiratory event duration), and body fluid parameters (total body water and body water distribution). The association between air pollution and OSA risk was determined. Results: Significant associations between OSA manifestations and short-term (1 month) exposure to PM2.5 and PM10 were identified. Similarly, significant associations were identified among total body water and body water distribution (intracellular-to-extracellular body water distribution), short-term (1 month) exposure to PM2.5 and PM10, and medium-term (3 months) exposure to PM10. Body water distribution might be a mediator that aggravates OSA manifestations, and short-term exposure to PM2.5 and PM10 may be a risk factor for OSA. Conclusion: Because exposure to PM2.5 and PM10 may be a risk factor for OSA that exacerbates OSA manifestations and exposure to particulate pollutants may affect OSA manifestations or alter body water distribution to affect OSA manifestations, mitigating exposure to particulate pollutants may improve OSA manifestations and reduce the risk of OSA. Furthermore, this study elucidated the potential mechanisms underlying the relationship between air pollution, body fluid parameters, and OSA severity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Apneia Obstrutiva do Sono , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos Retrospectivos , Apneia Obstrutiva do Sono/epidemiologia , Água Corporal
8.
J Sleep Res ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402610

RESUMO

Obstructive sleep apnea (OSA) has a heavy health-related burden on patients and the healthcare system. Continuous positive airway pressure (CPAP) is effective in treating OSA, but adherence to it is often inadequate. A promising solution is to detect sleep apnea events in advance, and to adjust the pressure accordingly, which could improve the long-term use of CPAP treatment. The use of CPAP titration data may reflect a similar response of patients to therapy at home. Our study aimed to develop a machine-learning algorithm using retrospective electrocardiogram (ECG) data and CPAP titration to forecast sleep apnea events before they happen. We employed a support vector machine (SVM), k-nearest neighbour (KNN), decision tree (DT), and linear discriminative analysis (LDA) to detect sleep apnea events 30-90 s in advance. Preprocessed 30 s segments were time-frequency transformed to spectrograms using continuous wavelet transform, followed by feature generation using the bag-of-features technique. Specific frequency bands of 0.5-50 Hz, 0.8-10 Hz, and 8-50 Hz were also extracted to detect the most detected band. Our results indicated that SVM outperformed KNN, LDA, and DT across frequency bands and leading time segments. The 8-50 Hz frequency band gave the best accuracy of 98.2%, and a F1-score of 0.93. Segments 60 s before sleep events seemed to exhibit better performance than other pre-OSA segments. Our findings demonstrate the feasibility of detecting sleep apnea events in advance using only a single-lead ECG signal at CPAP titration, making our proposed framework a novel and promising approach to managing obstructive sleep apnea at home.

9.
Hum Factors ; : 187208231183874, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387305

RESUMO

OBJECTIVE: This study proposed a moving average (MA) approach to dynamically process heart rate variability (HRV) and developed aberrant driving behavior (ADB) prediction models by using long short-term memory (LSTM) networks. BACKGROUND: Fatigue-associated ADBs have traffic safety implications. Numerous models to predict such acts based on physiological responses have been developed but are still in embryonic stages. METHOD: This study recorded the data of 20 commercial bus drivers during their routine tasks on four consecutive days and subsequently asked them to complete questionnaires, including subjective sleep quality, driver behavior questionnaire and the Karolinska Sleepiness Scale. Driving behaviors and corresponding HRV were determined using a navigational mobile application and a wristwatch. The dynamic-weighted MA (DWMA) and exponential-weighted MA were used to process HRV in 5-min intervals. The data were independently separated for training and testing. Models were trained with 10-fold cross-validation strategy, their accuracies were evaluated, and Shapley additive explanation (SHAP) values were used to determine feature importance. RESULTS: Significant increases in the standard deviation of NN intervals (SDNN), root mean square of successive heartbeat interval differences (RMSSD), and normalized spectrum of high frequency (nHF) were observed in the pre-event stage. The DWMA-based model exhibited the highest accuracy for both driver types (urban: 84.41%; highway: 80.56%). The SDNN, RMSSD, and nHF demonstrated relatively high SHAP values. CONCLUSION: HRV metrics can serve as indicators of mental fatigue. DWMA-based LSTM could predict the occurrence of the level of fatigue associated with ADBs. APPLICATION: The established models can be used in realistic driving scenarios.

10.
Sci Total Environ ; 887: 163969, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37164092

RESUMO

BACKGROUND: Few studies have explored the role of body composition linking air pollution to obstructive sleep apnea (OSA). OBJECTIVE: To estimate the effects of air pollution on body composition and OSA, and that of body composition on OSA. METHODS: This study included 3550 individuals. A spatiotemporal model estimated personal exposure. Nocturnal changes in body composition were assessed through bioelectric impedance analysis. OSA was diagnosed using polysomnography. A generalized linear model was used to evaluate the absolute nocturnal changes in body composition associated with an interquartile range (IQR) increase in pollutants. A generalized logistic model was used to estimate odds ratios (ORs) of mild-OSA compared to non-OSA. Association between body composition and apnea-hypopnea index (AHI) was investigated through partial least squares (PLS) regression. RESULTS: Nocturnal changes in lower-limb body composition were associated with NO2 and PM2.5 in all patients. In participants with AHI <15, both short- and long-term NO2 exposures affected body composition and mild-OSA, while PM2.5 was not associated with either outcome. In a PLS model incorporating eight NO2-associated lower-limb parameters, the variable importance projection scores (VIP) of left leg impedance (LLIMP), predicted muscle mass (LLPMM), fat-free mass (LLFFM), and right leg impedance (RLIMP) exceeded 1; the corresponding coefficients ranked in the top four for AHI prediction. The adjusted OR (mild vs. non-OSA) was 1.67 (95 % CI: 1.36-2.03) associated with an IQR increase in prediction value estimated from body compositions. Notably, the two-pollutant model investigating the effects of pollutants on body compositions revealed associations of four parameters (LLIMP, LLPMM, LLFFM, and RLIMP) with NO2 in all lags, which indicates their indispensability in the association between NO2 and AHI. CONCLUSIONS: NO2 exacerbates mild-OSA by disrupting nocturnal changes in lower-limb body composition of patients with AHI <15. PM2.5 was associated with nocturnal changes in lower-limb body composition but not with mild-OSA.


Assuntos
Poluição do Ar , Poluentes Ambientais , Apneia Obstrutiva do Sono , Humanos , Estudos Transversais , Taiwan , Dióxido de Nitrogênio , Composição Corporal
11.
Life (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240863

RESUMO

Obstructive sleep apnea (OSA) with a low arousal threshold (low-ArTH) phenotype can cause minor respiratory events that exacerbate sleep fragmentation. Although anthropometric features may affect the risk of low-ArTH OSA, the associations and underlying mechanisms require further investigation. This study investigated the relationships of body fat and water distribution with polysomnography parameters by using data from a sleep center database. The derived data were classified as those for low-ArTH in accordance with criteria that considered oximetry and the frequency and type fraction of respiratory events and analyzed using mean comparison and regression approaches. The low-ArTH group members (n = 1850) were significantly older and had a higher visceral fat level, body fat percentage, trunk-to-limb fat ratio, and extracellular-to-intracellular (E-I) water ratio compared with the non-OSA group members (n = 368). Significant associations of body fat percentage (odds ratio [OR]: 1.58, 95% confident interval [CI]: 1.08 to 2.3, p < 0.05), trunk-to-limb fat ratio (OR: 1.22, 95% CI: 1.04 to 1.43, p < 0.05), and E-I water ratio (OR: 1.32, 95% CI: 1.08 to 1.62, p < 0.01) with the risk of low-ArTH OSA were noted after adjustments for sex, age, and body mass index. These observations suggest that increased truncal adiposity and extracellular water are associated with a higher risk of low-ArTH OSA.

12.
ACS Environ Au ; 3(1): 12-17, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37101840

RESUMO

We conducted a cross-sectional study to investigate associations of particulate matter (PM) of less than 2.5 µm in aerodynamic diameter (PM2.5) and PM deposition with nocturnal changes in body composition in obstructive sleep apnea (OSA) patients. A bioelectric impedance analysis was used to measure the pre- and postsleep body composition of 185 OSA patients. Annual exposure to PM2.5 was estimated by the hybrid kriging/land-use regression model. A multiple-path particle dosimetry model was employed to estimate PM deposition in lung regions. We observed that an increase in the interquartile range (IQR) (1 µg/m3) of PM2.5 was associated with a 20.1% increase in right arm fat percentage and a 0.012 kg increase in right arm fat mass in OSA (p < 0.05). We observed that a 1 µg/m3 increase in PM deposition in lung regions (i.e., total lung region, head and nasal region, tracheobronchial region, and alveolar region) was associated with increases in changes of fat percentage and fat mass of the right arm (ß coefficient) (p < 0.05). The ß coefficients decreased as follows: alveolar region > head and nasal region > tracheobronchial region > total lung region (p < 0.05). Our findings demonstrated that an increase in PM deposition in lung regions, especially in the alveolar region, could be associated with nocturnal changes in the fat percentage and fat mass of the right arm. PM deposition in the alveolar region could accelerate the body fat accumulation in OSA.

13.
Environ Res ; 229: 115957, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084949

RESUMO

Long-term exposure to air pollution can lead to cardiovascular disease, metabolic syndrome, and chronic respiratory disease. However, from a lifetime perspective, the critical period of air pollution exposure in terms of health risk is unknown. This study aimed to evaluate the impact of air pollution exposure at different life stages. The study participants were recruited from community centers in Northern Taiwan between October 2018 and April 2021. Their annual averages for fine particulate matter (PM2.5) exposure were derived from a national visibility database. Lifetime PM2.5 exposures were determined using residential address information and were separated into three stages (<20, 20-40, and >40 years). We employed exponentially weighted moving averages, applying different weights to the aforementioned life stages to simulate various weighting distribution patterns. Regression models were implemented to examine associations between weighting distributions and disease risk. We applied a random forest model to compare the relative importance of the three exposure life stages. We also compared model performance by evaluating the accuracy and F1 scores (the harmonic mean of precision and recall) of late-stage (>40 years) and lifetime exposure models. Models with 89% weighting on late-stage exposure showed significant associations between PM2.5 exposure and metabolic syndrome, hypertension, diabetes, and cardiovascular disease, but not gout or osteoarthritis. Lifetime exposure models showed higher precision, accuracy, and F1 scores for metabolic syndrome, hypertension, diabetes, and cardiovascular disease, whereas late-stage models showed lower performance metrics for these outcomes. We conclude that exposure to high-level PM2.5 after 40 years of age may increase the risk of metabolic syndrome, hypertension, diabetes, and cardiovascular disease. However, models considering lifetime exposure showed higher precision, accuracy, and F1 scores and lower equal error rates than models incorporating only late-stage exposures. Future studies regarding long-term air pollution modelling are required considering lifelong exposure pattern. .1.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Hipertensão , Síndrome Metabólica , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Síndrome Metabólica/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Doença Crônica , Exposição Ambiental/análise
14.
Life (Basel) ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983769

RESUMO

Obstructive sleep apnea (OSA) is a risk factor for neurodegenerative diseases. This study determined whether continuous positive airway pressure (CPAP), which can alleviate OSA symptoms, can reduce neurochemical biomarker levels. Thirty patients with OSA and normal cognitive function were recruited and divided into the control (n = 10) and CPAP (n = 20) groups. Next, we examined their in-lab sleep data (polysomnography and CPAP titration), sleep-related questionnaire outcomes, and neurochemical biomarker levels at baseline and the 3-month follow-up. The paired t-test and Wilcoxon signed-rank test were used to examine changes. Analysis of covariance (ANCOVA) was performed to increase the robustness of outcomes. The Epworth Sleepiness Scale and Pittsburgh Sleep Quality Index scores were significantly decreased in the CPAP group. The mean levels of total tau (T-Tau), amyloid-beta-42 (Aß42), and the product of the two (Aß42 × T-Tau) increased considerably in the control group (ΔT-Tau: 2.31 pg/mL; ΔAß42: 0.58 pg/mL; ΔAß42 × T-Tau: 48.73 pg2/mL2), whereas the mean levels of T-Tau and the product of T-Tau and Aß42 decreased considerably in the CPAP group (ΔT-Tau: -2.22 pg/mL; ΔAß42 × T-Tau: -44.35 pg2/mL2). The results of ANCOVA with adjustment for age, sex, body mass index, baseline measurements, and apnea-hypopnea index demonstrated significant differences in neurochemical biomarker levels between the CPAP and control groups. The findings indicate that CPAP may reduce neurochemical biomarker levels by alleviating OSA symptoms.

15.
Digit Health ; 9: 20552076231152751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896329

RESUMO

Objectives: Obstructive sleep apnea (OSA) is typically diagnosed by polysomnography (PSG). However, PSG is time-consuming and has some clinical limitations. This study thus aimed to establish machine learning models to screen for the risk of having moderate-to-severe and severe OSA based on easily acquired features. Methods: We collected PSG data on 3529 patients from Taiwan and further derived the number of snoring events. Their baseline characteristics and anthropometric measures were obtained, and correlations among the collected variables were investigated. Next, six common supervised machine learning techniques were utilized, including random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor (kNN), support vector machine (SVM), logistic regression (LR), and naïve Bayes (NB). First, data were independently separated into a training and validation dataset (80%) and a test dataset (20%). The approach with the highest accuracy in the training and validation phase was employed to classify the test dataset. Next, feature importance was investigated by calculating the Shapley value of every factor, which represented the impact on OSA risk screening. Results: The RF produced the highest accuracy (of >70%) in the training and validation phase in screening for both OSA severities. Hence, we employed the RF to classify the test dataset, and results showed a 79.32% accuracy for moderate-to-severe OSA and 74.37% accuracy for severe OSA. Snoring events and the visceral fat level were the most and second most essential features of screening for OSA risk. Conclusions: The established model can be considered for screening for the risk of having moderate-to-severe or severe OSA.

16.
Sleep Breath ; 27(2): 631-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35752719

RESUMO

PURPOSE: Body composition is considered to be associated with obstructive sleep apnea (OSA) severity. This cross-sectional study aimed to examine associations of overnight body composition changes with positional OSA. METHODS: The body composition of patients diagnosed with non-positional and positional OSA was measured before and after overnight polysomnography. Odds ratios (ORs) of outcome variables between the case (positional OSA) and reference (non-positional OSA) groups were examined for associations with sleep-related parameters and with changes in body composition by a logistic regression analysis. RESULTS: Among 1584 patients with OSA, we used 1056 patients with non-positional OSA as the reference group. We found that a 1-unit increase in overnight changes of total fat percentage and total fat mass were associated with 1.076-fold increased OR (95% confidence interval (CI): 1.014, 1.142) and 1.096-fold increased OR (95% CI: 1.010, 1.189) of positional OSA, respectively (all p < 0.05). Additionally, a 1-unit increase in overnight changes of lower limb fat percentage and upper limb fat mass were associated with 1.043-fold increased OR (95% CI: 1.004, 1.084) and 2.638-fold increased OR (95% CI: 1.313, 5.302) of positional OSA, respectively (all p < 0.05). We observed that a 1-unit increase in overnight changes of trunk fat percentage and trunk fat mass were associated with 1.056-fold increased OR (95% CI: 1.008, 1.106) and 1.150-fold increased OR (95% CI: 1.016, 1.301) of positional OSA, respectively (all p < 0.05). CONCLUSION: Our findings indicated that nocturnal changes in the body's composition, especially total fat mass, total fat percentage, lower limb fat percentage, upper limb fat mass, trunk fat percentage, and trunk fat mass, may be associated with increased odds ratio of positional OSA compared with non-positional OSA.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Estudos Transversais , Sono , Composição Corporal , Polissonografia
17.
Int J Occup Saf Ergon ; 29(4): 1429-1439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281493

RESUMO

Objectives. Current approaches via physiological features detecting aberrant driving behaviour (ADB), including speeding, abrupt steering, hard braking and aggressive acceleration, are developing. This study proposes using machine learning approaches incorporating heart rate variability (HRV) parameters to predict ADB occurrence. Methods. Naturalistic driving data of 10 highway bus drivers in Taiwan from their daily routes were collected for 4 consecutive days. Their driving behaviours and physiological data during a driving task were determined using a navigation mobile application and heart rate watch. Participants' self-reported data on sleep, driving-related experience, open-source data on weather and the traffic congestion level were obtained. Five machine learning models - logistic regression, random forest, naive Bayes, support vector machine and gated recurrent unit (GRU) - were employed to predict ADBs. Results. Most drivers with ADB had low sleep efficiency (≤80%), with significantly higher scores in driver behaviour questionnaire subcategories of lapses and errors and in the Karolinska sleepiness scale than those without ADBs. Moreover, HRV parameters were significantly different between baseline and pre-ADB event measurements. GRU had the highest accuracy (81.16-84.22%). Conclusions. Sleep deficit may be related to the increased fatigue level and ADB occurrence predicted from HRV-based models among bus drivers.


Assuntos
Condução de Veículo , Humanos , Acidentes de Trânsito , Frequência Cardíaca/fisiologia , Projetos Piloto , Teorema de Bayes , Aprendizado de Máquina
18.
Sleep Breath ; 27(5): 1953-1966, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36576599

RESUMO

PURPOSE: Obstructive sleep apnea (OSA) is frequently accompanied by hypertension, resulting in cardiovascular comorbidities. Continuous positive airway pressure is a standard therapy for OSA but has poor adherence. Inspiratory muscle training (IMT) may reduce airway collapsibility and sympathetic output, which may decrease OSA severity and blood pressure. In this meta-analysis of randomized controlled trials (RCTs), we evaluated the efficacy of IMT in patients with OSA. METHODS: We searched PubMed, EMBASE, Cochrane Library, Web of Science, and ClinicalTrials.gov databases for relevant RCTs published before November 2022. RESULTS: Seven RCTs with a total of 160 patients with OSA were included. Compared with the control group, the IMT group exhibited significantly lower systolic and diastolic blood pressure (mean difference [MD]: - 10.77 and - 4.58 mmHg, respectively), plasma catecholamine levels (MD: - 128.64 pg/mL), Pittsburgh Sleep Quality Index (MD: - 3.06), and Epworth Sleepiness Scale score (MD: - 4.37). No significant between-group differences were observed in the apnea-hypopnea index, forced vital capacity (FVC), ratio of forced expiratory volume in 1 s to FVC, or adverse effects. The data indicate comprehensive evidence regarding the efficacy of IMT for OSA. However, the level of certainty (LOC) remains low. CONCLUSION: IMT improved blood pressure- and sleep-related outcomes without causing adverse effects and may thus be a reasonable option for lowering blood pressure in patients with OSA. However, additional studies with larger sample sizes and rigorous study designs are warranted to increase the LOC.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Pressão Sanguínea , Ensaios Clínicos Controlados Aleatórios como Assunto , Sono , Pressão Positiva Contínua nas Vias Aéreas , Músculos
19.
Sci Total Environ ; 861: 160586, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455744

RESUMO

BACKGROUND: The objective of this study was to examine associations of daily averages and daily variations in ambient relative humidity (RH), temperature, and PM2.5 on the obstructive sleep apnea (OSA) severity. METHODS: A case-control study was conducted to retrospectively recruit 8628 subjects in a sleep center between January 2015 and December 2021, including 1307 control (apnea-hypopnea index (AHI) < 5 events/h), 3661 mild-to-moderate OSA (AHI of 5-30 events/h), and 3597 severe OSA subjects (AHI > 30 events/h). A logistic regression was used to examine the odds ratio (OR) of outcome variables (daily mean or difference in RH, temperature, and PM2.5 for 1, 7, and 30 days) with OSA severity (by the groups). Two-factor logistic regression models were conducted to examine the OR of RH with the daily mean or difference in temperature or PM2.5 with OSA severity. An exposure-response relationship analysis was conducted to examine the outcome variables with OSA severity in all, cold and warm seasons. RESULTS: We observed associations of mean PM2.5 and RH with respective increases of 0.04-0.08 and 0.01-0.03 events/h for the AHI in OSA patients. An increase in the daily difference of 1 % RH increased the AHI by 0.02-0.03 events/h in OSA patients. A daily PM2.5 decrease of 1 µg/m3 reduced the AHI by 0.03 events/h, whereas a daily decrease in the RH of 1 % reduced the AHI by 0.03-0.04 events/h. The two-factor model confirmed the most robust associations of ambient RH with AHI in OSA patients. The exposure-response relationship in temperature and RH showed obviously seasonal patterns with OSA severity. CONCLUSION: Short-term ambient variations in RH and PM2.5 were associated with changes in the AHI in OSA patients, especially RH in cold season. Reducing exposure to high ambient RH and PM2.5 levels may have protective effects on the AHI in OSA patients.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Estações do Ano , Estudos de Casos e Controles , Estudos Retrospectivos , Umidade , Apneia Obstrutiva do Sono/epidemiologia , Material Particulado
20.
Front Neurol ; 13: 1038735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530623

RESUMO

Objectives: Obstructive sleep apnea (OSA) may increase the risk of Alzheimer's disease (AD). However, potential associations among sleep-disordered breathing, hypoxia, and OSA-induced arousal responses should be investigated. This study determined differences in sleep parameters and investigated the relationship between such parameters and the risk of AD. Methods: Patients with suspected OSA were recruited and underwent in-lab polysomnography (PSG). Subsequently, blood samples were collected from participants. Patients' plasma levels of total tau (T-Tau) and amyloid beta-peptide 42 (Aß42) were measured using an ultrasensitive immunomagnetic reduction assay. Next, the participants were categorized into low- and high-risk groups on the basis of the computed product (Aß42 × T-Tau, the cutoff for AD risk). PSG parameters were analyzed and compared. Results: We included 36 patients in this study, of whom 18 and 18 were assigned to the low- and high-risk groups, respectively. The average apnea-hypopnea index (AHI), apnea, hypopnea index [during rapid eye movement (REM) and non-REM (NREM) sleep], and oxygen desaturation index (≥3%, ODI-3%) values of the high-risk group were significantly higher than those of the low-risk group. Similarly, the mean arousal index and respiratory arousal index (R-ArI) of the high-risk group were significantly higher than those of the low-risk group. Sleep-disordered breathing indices, oxygen desaturation, and arousal responses were significantly associated with an increased risk of AD. Positive associations were observed among the AHI, ODI-3%, R-ArI, and computed product. Conclusions: Recurrent sleep-disordered breathing, intermittent hypoxia, and arousal responses, including those occurring during the NREM stage, were associated with AD risk. However, a longitudinal study should be conducted to investigate the causal relationships among these factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...